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Abstract

The energy release rate of the ENF adhesive joint specimen is derived. The resulting formula accounts for the

presence of an adhesive layer with a possibly non-linear constitutive relation. The actual form of the constitutive

relation need not to be known a priori. It is shown that measurements of both the applied load and the adhesive

deformation at the crack tip are needed to determine the instantaneous value of the energy release rate. Experimental

results show that the influence of the deformation of the adhesive layer can be substantial. The stability of the ENF-

specimen is studied and a method to estimate the critical value of the crack length, accounting for the flexibility of the

adhesive layer, is presented. In the analysis, the adherends are modelled as elastically deforming Euler–Bernoulli beams

and the intermediate adhesive layer is modelled as a material surface transmitting shear stress between the adherends.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The end-notch flexure (ENF) geometry was introduced by Barrett and Foschi (1977) in a study of the

fracture toughness of wood in shear. The concept was later extended to the closely related problems of

delamination of composites (e.g. Carlsson et al., 1986) and shear testing of adhesive joints (cf. Chai, 1988).
The ENF specimen (Fig. 1) consists of two adherends partially joined by an adhesive layer. The part of the

specimen where the adherends are not joined by the adhesive can, in a macroscopic sense, be regarded as a

crack. The end of this crack, i.e. where the adhesive starts, is in the sequel denoted the crack tip even though

there might be no sharp (microscopic) crack. Due to the antisymmetric loading, the geometry provides

essentially pure mode II conditions at the crack tip and it is well suited for shear testing of adhesives provided

that the specimen is designed so that the adherends deform elastically. The specimen is used to determine the

fracture energy, i.e. the energy needed to fracture a unit area of the adhesive layer. Provided that the adhesive
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Fig. 1. Geometry of ENF-specimen. Dimensions used in example: L ¼ 1000 mm, H ¼ W ¼ 32:6 mm, t ¼ 0:2 mm (W ¼ width,

t ¼ adhesive thickness). Initial crack length: a ¼ 350 mm. Young’s modulus of adherends: E ¼ 190 GPa.
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is loaded monotonically, this can be done indirectly by utilizing the energetic balance between the (apparent)

elastic energy per unit area stored in the monotonically loaded adhesive at the crack tip, and the elastic

energy released for a unit increase of the crack area. Measurement of the critical value of the energy release

rate determines the fracture energy. A reliable method to experimentally obtain the energy release rate is

thereby of vital importance. The objective of the present paper is to develop such a reliable method

by deriving an explicit formula for the instantaneous energy release rate of the ENF-specimen.

Russel and Street (1982) present a simple formula for the energy release rate,
J0 ¼
9

16

P 2a2

EW 2H 3
ð1Þ
It is based on the Euler–Bernoulli beam theory and does not account for the flexibility of the adhesive layer,

i.e. corresponding to a rigid adhesive layer. Later, Chai and Mall (1988) use the same assumptions to derive

a formula with extended validity to cases with a non-centrally applied load. Carlsson et al. (1986) derive an

improved formula accounting also for shear deformation of the adherends, an important effect with

adherends of composite materials. For specimens with slender metal adherends, however, this effect is

negligible. Chai and Mall (1988) report a finite element analysis of a particular specimen configuration with
a rigid adhesive layer. The analysis shows that Eq. (1) underestimates the energy release rate with only a few

percent. Experiments on thin adhesive layers reported by Chai (1988) confirm this theoretical result, at least

for loads which are only a fraction of the critical load for crack growth. For small loads, the adhesive

deforms linearly elastically along the entire specimen. When testing tough engineering adhesives, however,

the material at the crack tip experiences extensive non-linear deformation as the load is increased towards

fracture. As shown in this paper, this gives large errors when using Eq. (1).

Several efforts to extend the applicability by accounting for the flexibility of the adhesive layer are re-

ported in the literature, especially in the field of delamination of composites. Chatterjee (1991) uses both
linear and non-linear models of the adhesive layer to obtain corrections to Eq. (1). Corleto and Hogan

(1995) employ Timoshenko’s beam theory and a generalized elastic foundation model for the adhesive

layer. They conclude that the crack tip deformation is a critical factor in the evaluation of the energy release

rate. This conclusion is supported by Ding and Kortschot (1999) who perform a similar analysis where only

the crack tip region is modelled as an elastic foundation. All these reports indicate the importance of the

flexibility of the adhesive layer. However, they are all limited to specific models for the adhesive layer and

no general conclusions can be drawn regarding the corrections to Eq. (1).

In the present paper a formula for the energy release rate, accounting for the flexibility of the adhesive
layer, is derived. The formula is based on the equations governing the deformation of the ENF-specimen
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and requires no a priori knowledge of the constitutive relation of the adhesive layer. The formula consists of

two dominating terms; the classical term in Eq. (1) and an additional term which is proportional to the

product of the applied load and the crack tip deformation, cf. Eq. (36).

In the next section the governing equations are derived including the effect of a general non-linear
relation between the shear deformation, v, of the adhesive layer and the shear stress, s. In Section 3 the

governing equations are used to derive an exact (within the theory used) formula for the energy release rate.

At this point it is argued that the exact formula can be simplified. In order to verify this, an experiment is

simulated using simplified constitutive models for the adhesive layer, cf. Fig. 4. The solution technique is

briefly described in Section 4. In Section 5 the results of the simulations are used to obtain an approximate

formula for the energy release rate and to establish conditions which must be fulfilled for the approximate

formula to be valid. Experimental results are reported in Section 6. The final Section 7 is devoted to a study

of the stability of the ENF-specimen.
2. Governing equations

In this section the equations governing the deformation of the ENF-specimen are derived. The geometry

and the coordinate system used are shown in Fig. 1. Obviously, the test specimen is symmetric with respect

to a line passing through the middle of the adhesive layer. Irrespective of details regarding the applied load

and the support reactions, the loading is antisymmetric with respect to this geometrical symmetry line.

Thus, the displacement field is essentially antisymmetric with respect to the line of symmetry. An anti-

symmetric displacement field implies that the adhesive layer does not experience peel deformation. Strictly
speaking, however, the conditions at the loading point and at the two supports are not antisymmetric. The

effect of this deficiency is that peel stress occur near the loading point and at the right support. In these

regions the peel stress can be of the same magnitude as the shear stress predicted by beam theory, cf.

Salomonsson (2002). However, at the crack tip the peel stress is negligible. This is one reason why the ENF-

specimen is suitable for shear testing of adhesive layers. Hence, peel deformation is neglected in this paper.

Moreover, due to longitudinal straining of the adherends, the adhesive layer, beside the shear deformation,

also experiences bending. As will be demonstrated below, this is most accentuated near the crack tip and the

loading point. In general, the strains associated with bending of the adhesive layer are likely to be of a
smaller magnitude than those associated with shear deformation, at least for situations where the adhesive

material is weak as compared to the adherend material (cf. Klarbring, 1991; Schmidt, 2001). For the present

case, the steel adherends are designed to deform within the elastic limit (cf. Alfredsson et al., 2003). Thus,

the maximum strain related to bending of the adhesive layer is only about 0.1%. This is a very small strain

as compared to the shear strain. The critical shear deformation, vc ¼ 0:167 mm, is of the same size as the

adhesive thickness, t ¼ 0:2 mm. Accordingly, effects of bending of the adhesive layer are neglected. The

adhesive layer is thus assumed to deform in pure shear.

Consider now two points, one on each adherend, symmetrically located with respect to the middle of the
adhesive layer, cf. Fig. 2. The longitudinal displacements of these points, in relation to a point located in the

middle of the adhesive layer, are of equal magnitude but of opposite directions. In the following u denotes

the longitudinal displacement in the positive/negative x-direction of the middle line of the lower/upper

adherend. Both the longitudinal displacement, u, and the slope, w0, contribute to the shear deformation

of the adhesive. From the geometry shown in Fig. 2 it follows that, for small values of the slope ðjw0j � 1Þ,
the shear deformation, v, of the adhesive layer is given by
vðxÞ ¼ 2uðxÞ þ Hw0ðxÞ ð2Þ
where H is the height of each adherend. The constitutive relation for the adhesive is expressed in terms of
the shear stress, s, and the total shear deformation, v, of the adhesive layer. A constitutive relation for an



Fig. 2. Left: undeformed geometry; right: deformed geometry.
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adhesive layer loaded in monotonically increasing shear is assumed to exist and to be valid for all points

along the layer,
s ¼ sðvÞ ð3Þ
The sectional forces and moments of the two adherends are antisymmetric with respect to the symmetry

line, cf. Fig. 3. The normal forces on the two adherend cross sections are of equal magnitude but of

opposite directions. Henceforth N denotes the tensional/compressive normal force of the lower/upper

adherend. The shear forces and bending moments are equal for the two adherends. In the following V and

M denote the shear forces and the bending moments of the adherends, respectively. The equilibrium

equations read (cf. Alfredsson, 2003),
N 0ðxÞ ¼ W s½vðxÞ	; V 0ðxÞ ¼ 0 ð4a;bÞ
V ðxÞ ¼ M 0ðxÞ þ 1

2
WHs½vðxÞ	 ð4cÞ
where W is the width of the specimen. Assuming that the adherends deform elastically and according to the

Euler–Bernoulli beam theory, the normal force and the bending moment are given by
Fig. 3. Positive directions of adhesive stress and sectional loads.
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NðxÞ ¼ EWHu0ðxÞ; MðxÞ ¼ 
EWH 3

12
w00ðxÞ ð5a;bÞ
where E is Young’s modulus of the adherend material. Equations (5a,b) may be inserted into the dif-

ferential equations (4a–c) whereby a system of ordinary differential equations in uðxÞ, wðxÞ and vðxÞ is

obtained. These equations, complemented by the geometric relation (2) and the constitutive relation (3),

state the mathematical problem. At a boundary, one of each in the three pairs of entities ðN ; uÞ, ðV ;wÞ
and ðM ;w0Þ must be prescribed (cf. Alfredsson, 2003). For the present loading conditions it is advanta-

geous to prescribe the normal forces, the bending moments and the shear forces at the adhesive

boundaries,
Nð0Þ ¼ 0; NðcÞ ¼ 0 ð6a;bÞ

Mð0Þ ¼ Pa=4; MðcÞ ¼ 0 ð7a;bÞ

V ð0Þ ¼ P=4; V ðcÞ ¼ 
P=4 ð8a;bÞ

For a general constitutive relation (3) the governing equations given above constitute a non-linear

boundary value problem. Its solution has a discontinuity in the shear force at the loading point. The normal

force, the bending moment, the longitudinal displacement, the deflection and the slope, on the other hand,

are continuous along the entire specimen. It follows from the differential Eq. (4b) and the boundary
conditions (8a,b) that the shear force is constant along two portions of the specimen with a discontinuity

at the point of load application,
V ðxÞ ¼ þP=4 for 06 x < b

P=4 for b < x < c

�
ð9Þ
Introducing Eq. (4c) into Eq. (9) results in the differential equation,
M 0ðxÞ þ 1

2
WHs½vðxÞ	 ¼ þP=4 for 06 x < b


P=4 for b < x < c

�
ð10Þ
In order to obtain a boundary value problem which involves only the shear deformation, the longitudinal

displacement and the deflection are eliminated from the governing equations. To this end, sðvÞ is substituted
from Eq. (4a) into Eq. (10). With N and M expressed in terms of the displacements u and w according to

Eqs. (5a,b) the result is,
w000ðxÞ 
 6

H
u00ðxÞ ¼


 3P
EWH 3

for 06 x < b

þ 3P
EWH 3

for b < x < c

8><
>: ð11Þ
By differentiating Eq. (2) twice and using Eq. (11), a relation between the second derivatives of u and v is

obtained,
8u00ðxÞ ¼
v00ðxÞ þ 3P

EWH 2
for 06 x < b

v00ðxÞ 
 3P
EWH 2

for b < x < c

8><
>: ð12Þ
With the second derivative of u from Eq. (12) inserted into the equation obtained by inserting Eq. (5a) into

Eq. (4a), a resulting differential equation is found,
EHv00ðxÞ ¼ 8fs½vðxÞ	 
 �sg for 06 x < b
8fs½vðxÞ	 þ �sg for b < x < c

�
ð13Þ
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where �s is identified as the shear stress as predicted by Jouravski’s theory for shear stresses in solid beam

sections (e.g. Beer et al., 2002),
1 A
�s ¼ 3

8

P
WH

ð14Þ
According to Eq. (2) and the discussion following Eq. (8), both v and v0 are continuous along the entire

specimen. The remaining boundary conditions (6a,b) and (7a,b) transform to
v0ð0Þ ¼ 
8
�sa
EH

; v0ðcÞ ¼ 0 ð15a;bÞ
Equations (13) and (15a,b) show the non-linear boundary value problem in a form where only the shear

deformation appears. These equations are used in the following to derive a formula for the energy release

rate, cf. Eqs. (22) and (36).

The deflection, wðxÞ, of the specimen is determined from integration of Eq. (5b), where the bending

moment in the adherends is given by
MðxÞ ¼
1
4
P ðxþ aÞ 
 1

2
HNðxÞ for 
 a6 x6 b

1
4
P ðc
 xÞ 
 1

2
HNðxÞ for b6 x6 c

(
ð16Þ
Here, the normal force in the adherends is given by
NðxÞ ¼ W
Z x

0

s½vð~xÞ	d~x ð17Þ
which follows from Eqs. (4a) and (6a).
3. Energetic balance

The shear stress distribution in the ENF-specimen is non-uniform. This makes it virtually impossible to

use the test specimen for a direct 1 measurement of the adhesive constitutive relation, sðvÞ. The specimen is,

however, recognized to be well suited for measuring the fracture energy, i.e. the ultimate value of the energy

release rate,
J ¼
Z vð0Þ

0

sð~vÞd~v ð18Þ
For an ENF-specimen with a rigid adhesive layer (e.g. Chai and Mall, 1988), the energy release rate is given

by Eq. (1). This equation is frequently used to deduce the fracture energy from experiments. However, the

presence of a compliant adhesive layer affects the value of J . The equations governing the deformation of

the specimen are hence used to obtain an expression for J which includes the effect of the adhesive com-

pliance. For this purpose, a technique developed by Olsson and Stigh (1989), to derive the energy release
rate of the DCB-specimen, is followed. Thus, Eq. (13) is multiplied by v0ðxÞ and integrated from the crack

tip to the loading point,
EH
Z b

0

v00ðxÞv0ðxÞdx ¼ 8

Z b

0

fs½vðxÞ	 
 �sgv0ðxÞdx ð19Þ
lfredsson et al. (2003) describe an inverse method to obtain the adhesive constitutive relation.



Fig. 4. Simplified constitutive relations for adhesive layer. Left: sawtooth model. Right: ideal-plastic model.
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The integral on the left hand side is evaluated directly and the integrating variable of the integral on the

right hand side is shifted from x to v,
EH
2

fv0ðxÞg2
h ib

0
¼ 8

Z vðbÞ

vð0Þ
fsðvÞ 
 �sgdv ð20Þ
Evaluating the integral for the second term of the right hand side it follows that,
Z vð0Þ

vðbÞ
sðvÞdv ¼ EH

16
fv0ðxÞg2
h i0

b
þ �sfvð0Þ 
 vðbÞg ð21Þ
Introducing the boundary condition (15a) and inserting �s from Eq. (14), the energy release rate defined

by Eq. (18) takes the form,
J ¼ 9

16

P 2a2

EW 2H 3

 EH

16
fv0ðbÞg2 þ 3

8

P
WH

fvð0Þ 
 vðbÞg þ
Z vðbÞ

0

sðvÞdv ð22Þ
This formula for J is exact within the theory applied here. The first term is obviously equal to J0 which is the

energy release rate for the case of a rigid adhesive layer, cf. Eq. (1). The other terms represent corrections of
J0 that account for the flexibility of the adhesive layer. The size of these terms depend on the specific case. In

some cases the first term may suffice. However, it is noted from Eq. (22) that, in the general case, the force,

P , the adhesive shear deformation at the crack tip, vð0Þ, and at the loading point, vðbÞ, and v0ðbÞ must be

measured. Moreover, in order to evaluate the last term in Eq. (22), sðvÞ must be known in advance.

However, if the distance between the crack tip and the loading point, b, is large enough, the shear

deformation at the loading point, vðbÞ, is much smaller than the shear deformation at the crack tip, vð0Þ.
The last two terms in Eq. (22) can then be neglected. This also means that sðvÞ need not to be known in

advance. By differentiation of Eq. (2) it is shown that jv0j is twice the tensile/compressive strain in the
adherends at the upper/lower interface. The second term of Eq. (22) could thus be determined from

measurements of the strains in the adherends at the loading point. As demonstrated in Section 5, however,

this term can be adequately approximated without the need of any strain measurements. In order to justify

the approximations discussed here, the development of the deformation field, vðxÞ, is first simulated for two

simplified constitutive models, cf. Fig. 4. The simulations are used to motivate an approximate formula

for J containing measurable quantities.
4. Simulation of an experiment –– solution procedure

In order to study the size of the terms in Eq. (22), an experiment is simulated using simple sðvÞ relations,
cf. Fig. 4. A simple mathematical form of a typical constitutive relation is the ‘‘sawtooth model’’, cf. the left
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part of Fig. 4, used by e.g. Ungsuwarungsri and Knauss (1987), Stigh (1988), Mi et al. (1998) and Zou et al.

(2003). In a numerical simulation, such a piecewise linear relation catches the important features without

leading to too complicated equations. Besides the sawtooth model, simulations with the ‘‘ideal-plastic’’

model are performed. In contrast to the sawtooth model, this model loses its load bearing capacity
abruptly, cf. the right part of Fig. 4. Thus, the two adhesive models in Fig. 4 are fundamentally different,

which gives substance to the conclusions drawn from the simulations. A solution technique is developed

below, where the present problem is worked out by solving linear equations.

It should be noted that the constitutive relations discussed here, cf. Eq. (3), are relations between the

stress acting at the adherend/adhesive interface and the total deformation of the adhesive layer. Theoret-

ically, this corresponds to averaging over a Representative Volume Element containing a number of mi-

crocracks (e.g. Xia and Hutchinson, 1994). With this level of modelling, the precise micromechanics of

deformation and fracture in the adhesive layer is not modelled. Instead it is manifested in the form of the
relation sðvÞ. A typical constitutive relation for an adhesive layer has an initial linear part followed by a

part where the stiffness decreases until a maximum is reached. The maximum is followed by a strain-

softening part where the load carrying capacity is reduced to zero. This has been found experimentally for

adhesive layers loaded in peel (Stigh and Andersson, 2000; Sørensen, 2002; Andersson and Stigh, 2003) and

for adhesive layers loaded in shear (Wernersson and Gustafsson, 1987; Alfredsson et al., 2003). The strain–

softening is most likely due to the formation of microcracks and voids in the interior of the adhesive layer,

eventually leading to macroscopic fracture of the adhesive layer, i.e. cohesive fracture. Another source of

strain softening is adhesive fracture, i.e. fracture at the adhesive/adherend interface.
The numerical data used in the simulations are based on the experimental results presented in Section 6.

Thus, the fracture energy and the critical shear deformation are Jc ¼ 3420 J/m2 and vc ¼ 0:167 mm,

respectively. The initial stiffness of the adhesive layer is k ¼ 4300 GN/m3. For the sawtooth model, k ¼ sa=va
and sa ¼ 2Jc=vc. For the ideal-plastic model, k ¼ sb=vb and sb ¼ kvcð1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
 2Jc=ðkv2cÞ

p
Þ. This gives the

numerical values of the model parameters: sa ¼ 41:0 MPa, va ¼ 9:53 lm, sb ¼ 20:8 MPa and vb ¼ 4:83 lm.

The solution is divided into three parts: First, a linear elastic solution is obtained, corresponding to an

applied load small enough to ensure that the adhesive layer is linear elastic throughout. Increasing the load

further results in initiation and growth of a process zone at the crack tip. This is the second part of the

solution, where the global stiffness is gradually diminishing. The third part corresponds to crack growth. In
this part, the applied load and the size of the process zone decrease as the deformation at the crack tip is

increased beyond the critical value.

4.1. Solution for a linear elastic adhesive

For moderate magnitudes of the applied load, the shear deformation is small at all points of the adhesive

layer. The constitutive relation is then given by sðvÞ ¼ kv, and Eq. (13) results in a linear differential

equation of second order,
v00ðxÞ 
 j2vðxÞ ¼ 
j2�s=k for 06 x6 b
þj2�s=k for b6 x6 c

�
ð23Þ
where j 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8k=EH

p
constitutes the inverse of a length scale of the solution. The general solution to this

equation is given by
vðxÞ ¼ A1e
jx þ A2e


jx þ �s=k for 06 x6 b
A3e

jx þ A4e

jx 
 �s=k for b6 x6 c

�
ð24Þ
The integration constants A1, A2, A3 and A4 are determined by the boundary conditions (15a,b) and the
requirement on continuity of v and v0 at x ¼ b.
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4.2. Growth of process zone

As the displacement of the loading point is increased, the adhesive deformation, vð0Þ, at the crack tip,

reaches the proportionality limit, va or vb, cf. Fig. 4. When the displacement of the loading point is in-
creased further, a process zone starts to develop at the crack tip. The length of the process zone is denoted

by d. Thus, the process zone occupies the region ahead of the crack tip ð06 x6 dÞ. In the following analysis

it is assumed that the process zone does not include the loading point, i.e. d < b, cf. Fig. 1.
For the sawtooth model, the deformation inside the process zone is governed by sðvÞ ¼ �kðvc 
 vÞ, where

�k ¼ sa=ðvc 
 vaÞ. Insertion into Eq. (13) yields a linear differential equation of second order,
v00ðxÞ þ �j2vðxÞ ¼ �j2ðvc 
 �s=�kÞ for 06 x6 d ð25Þ

where �j 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�k=EH

p
. The general solution is given by
vðxÞ ¼
B1 sinð�jxÞ þ B2 cosð�jxÞ þ vc 
 �s=�k for 06 x6 d

B3e
jx þ B4e


jx þ �s=k for d 6 x6 b

B5e
jx þ B6e


jx 
 �s=k for b6 x6 c

8><
>: ð26Þ
For the ideal-plastic model, sðvÞ ¼ sb in the process zone. Insertion into Eq. (13) yields,
v00ðxÞ ¼ sb 
 �s
k

j2 for 06 x6 d ð27Þ
The general solution is given by
vðxÞ ¼
C1

x
L þ C2 þ 1

2

sb
�s
k j2x2 for 06 x6 d

C3e
jx þ C4e


jx þ �s=k for d 6 x6 b

C5e
jx þ C6e


jx 
 �s=k for b6 x6 c

8><
>: ð28Þ
The non-linear problems are now solved by utilizing a technique similar to the one presented by Stigh
(1988) in a crack growth analysis of a DCB-specimen. Hence, the length of the process zone, d, is used as an

independent variable. The six constants of integration and the applied load, represented by �s, are to be

determined. Thus, seven equations are needed. Two equations are given by the boundary conditions

(15a,b). Four more equations are given by the fact that both v and v0 must be continuous at x ¼ d and at

x ¼ b. The final seventh equation is provided by the knowledge of the level of deformation at the right end

of the process zone: vðdÞ ¼ va for the sawtooth model and vðdÞ ¼ vb for the ideal-plastic model. It is noted

that the resulting system of equations is linear in the integration constants (Bi or Ci) and �s. For a given value

of d, they are easily determined by solving the linear system of equations. Thus, each value of d corresponds
to a force, represented by �s, and a distribution of shear deformation, given by the constants B1–6 or C1–6.

By analysing an increasing sequence of d, the load-deformation history is obtained, i.e. �s½vð0Þ	.
As the size of the process zone, d, is increased, the adhesive deformation at the crack tip eventually

reaches the critical value, i.e. vð0Þ ¼ vc. The corresponding size of the process zone, dc, is, for the sawtooth
model, determined from Eq. (26) by B2 ¼ �s=�k. For e
jb � 1, the resulting equation is approximately given

by
f1ðdÞ þ f2ðdÞ ¼ 0 ð29aÞ

where
f1ðdÞ ¼ j½kva þ �kðva 
 vcÞ	 þ 2�kjðvc 
 vaÞejðd
bÞ ð29bÞ

f2ðdÞ ¼ k�j½vaðjaþ 1Þ 
 vc	 sinð�jdÞ þ k½�j2aðva 
 vcÞ 
 jva	 cosð�jdÞ ð29cÞ
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For the ideal-plastic model, the critical size of the process zone, dc, is determined from Eq. (28) by C2 ¼ vc,
or approximately for e
jb � 1,
j½jadðjd=2þ 1Þ þ aþ d	 þ 1þ ðj2d2 
 2Þejðd
bÞ

jðaþ dÞ þ 1
 2ejðd
bÞ 
 vc
vb

¼ 0 ð30Þ
It should be noted that the approximate equations (29) and (30) provides excellent estimates of dc when
e
jb � 1.

4.3. Crack growth

As the displacement of the loading point is increased further, the shear deformation at the initial crack

tip exceeds the critical value, vc. This phase of the loading sequence corresponds to crack growth. In the

mathematical analysis of crack growth, the crack length a is increased, and a new size of the process zone, d,
is calculated using Eq. (29) or (30). Once the size of the process zone is known, the shear stress distribution

and the load level is obtained similarly as in the previous analysis for growth of process zone, i.e. by solving

a linear system of equations. It can be noted that, as the crack propagates, the size of the process zone

decreases slightly from the value, dc, prevailing at the start of crack growth. The same effect is observed by
Stigh (1988) in analysing the DCB-specimen under similar conditions. This effect appears to be a general

feature of the use of a stress-deformation relation to model an adhesive layer.
5. Approximate formula for the energy release rate

The objective of the present section is to simplify the general form of the instantaneous energy release

rate, cf. Eq. (22), and to establish the conditions that must be fulfilled for an approximate formula to be
valid. To be more specific, the condition to be fulfilled is that the distance, b, between the crack tip and the

loading point is large enough so that the adhesive deformation at the loading point is negligibly small. In

order to quantify this condition, an experiment is simulated using the technique described in the previous

section. The development of the deformation field is studied, as the deformation at the crack tip increases

from zero towards and beyond fracture. Conclusions regarding the size of the different terms in Eq. (22) are

drawn from the results of the simulations.

Fig. 5 shows results for the case of a linear elastic adhesive. The dotted curve depicts the shear stress

distribution for a specimen containing no crack ða ¼ 0Þ. In the present case the test specimen is long in a
relative sense, i.e. the value of jL is large. Under these circumstances, the shear stress is close to �s,
predicted by Jouravski’s theory, except for a narrow region in the vicinity of the loading point where a

change of sign takes place. A shorter test specimen (not shown here), exhibits a more shallow shear stress

distribution with maximum values lower than the ones predicted by Jouravski’s theory. The other curves

in Fig. 5 represent the shear stress distribution when a crack is introduced. It is seen that the shear

stress distribution some distance from the crack tip remains practically the same as when no crack is

present. This is true as long as the distance between the crack tip and the loading point, b, is ‘long

enough’. For a linear elastic adhesive, b can be regarded as long if jbP 5. If this condition is met, the
solution described in Section 4.1 gives approximate values of the deformation at the crack tip and at the

loading point,
sð0Þ ¼ kvð0Þ ’ �sðjaþ 1Þ 
 sce ð31aÞ

vð0Þ � vðbÞ ’ 0; v0ðbÞ ’ 
�sj
k

¼ 
 P
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9

8

1

EkH 3

r
ð31b;cÞ
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It can be noted that jb ’ 6 for the curve in Fig. 5 corresponding to the crack length a ¼ 425 mm. The

difference between sce and sð0Þ is less than 0.03% for this case. As seen in Fig. 5, sce is generally substantially
larger than �s. The energy release rate, for the case of a linear elastic adhesive, is found by inserting

Eqs. (31a–c) into Eq. (22), or directly by inserting Eq. (31a) into the definition (18),
Jlin ¼ J0 1



þ 1

ja

�2

ð32Þ
where J0 is the energy release rate for the case of a rigid adhesive, cf. Eq. (1). It is thus found that the

presence of a linear elastic adhesive gives an increase of the energy release rate. The size of this effect is only

governed by the value of ja, provided, of course, that jbP 5.

The attention is now directed to the non-linear adhesive models depicted in Fig. 4. A process zone
develops in front of the crack tip. For the present case, both from the solution of the exact equations and

the approximate equations (29) and (30), the calculated values of the critical size of the process zone are

dc ¼ 81 mm for the sawtooth model and dc ¼ 115 mm for the ideal-plastic model. Thus, the size of the

process zone is about three times the height of the adherends and several hundred times the adhesive

thickness (t ¼ 0:2 mm). Fig. 6a shows the shear stress distribution in the adhesive layer when the defor-

mation at the crack tip has reached the critical value, i.e. at the onset of crack growth. The dotted line

depicts the stress distribution for the case of no crack ða ¼ 0Þ at the same load level. It is seen that the

adhesive deformation at the loading point is practically unaffected by the presence of the crack and the
process zone. Fig. 6b shows the shear stress distribution when the crack has propagated to a length of

a ¼ 380 mm. It is seen that, for both the sawtooth and the ideal-plastic models, the shear stress at the

loading point differs somewhat from the ‘‘no crack’’ solution (dotted curve). Numerical simulations show

that, as long as the distance between the crack tip and the loading point is large, i.e. if jb is large, Eqs.

(31b,c) are good approximations also in the non-linear case. The presence of a process zone means that, as

compared to the linear elastic case, a larger value of jb is needed in order to obtain good approximations

from Eqs. (31b,c). For a non-linear adhesive it is not straightforward to give an explicit formula for the

required value of b. This value depends both on the elastic properties of the specimen (through j) and on
the size of the process zone. The size of the process zone is, in turn, dependent of the constitutive relation
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and the geometry of the specimen. For the present adhesive, it is found by numerical simulations that the

approximations in Eq. (31b,c) give good accuracy, provided that jbP 10.

We are now in a position to simplify the general expression for the energy release rate, cf. Eq. (22). As

described above, the conditions at the loading point is approximated with good accuracy according to Eqs.
(31b,c), provided that jbP 10. The second term in Eq. (22) is approximated using v0ðbÞ from Eq. (31c). The

fourth term in Eq. (22) is discarded, since vðbÞ can be neglected as compared to vð0Þ according to Eq. (31b).

The last term in Eq. (22) is discarded for the same reason. Thus, an approximate formula for the energy

release rate with a non-linear adhesive reads
Japp ¼ J0 þ
3

8

P vð0Þ
WH


 9

128

P 2

kW 2H 2
ð33Þ
This formula for the energy release rate is valid not only prior to fracture, but also during crack growth.

The coordinate system used in the derivation of Eq. (22) indicates that, during crack growth, vð0Þ should be

measured at the instantaneous position of the crack tip. However, it is possible to avoid this by utilizing the

fact that the strain at the former adherend/adhesive interfaces is known. To this end, it is first noted that the

shear deformation at the instantaneous crack tip, vð0Þ, is related to the shear deformation at the initial

crack tip, vin, through
vð0Þ ¼ vin þ
Z 0


ða
ainÞ
v0ðxÞdx ð34aÞ
It follows from Eq. (2) and Fig. 2 that v0=2 is the negative/positive of the longitudinal strain at the upper/

lower adherend/adhesive interface, i.e.
v0ðxÞ ¼ 
 12MðxÞ
EWH 2

for 
 a6 x6 0 ð34bÞ
Using the distribution of the bending moment, MðxÞ, from Eq. (16), inserting Eq. (34b) into Eq. (34a), and

integrating, yields
vð0Þ ¼ vin 

3

2

P
EWH 2

ða2 
 a2inÞ ð35Þ
With this relation inserted into Eq. (33) it follows,
Japp ¼ J0in þ J1 
 J2 ð36aÞ
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where
Fig. 7.

in 10 m
J0in ¼
9

16

P 2a2in
EW 2H 3

; J1 ¼
3

8

P vin
WH

; J2 ¼
9

128

P 2

kW 2H 2
ð36b;c;dÞ
This is the key equation of the present paper. The only entities in the formula varying during a test are the

applied load, P , and the adhesive shear deformation at the initial position of the crack tip, vin. They can
both be measured. All other entities are either geometrical data ða;W ;HÞ or material constants ðE; kÞ.

The adhesive models treated here are based on a unique constitutive relation, sðvÞ, valid also during

crack growth. This means that the fracture energy, Jc, is constant during crack growth, cf. Eq. (18). The

solid curves of Fig. 7 show the progress of J , for the two adhesive models, as calculated from the

approximate formula (36). Prior to crack growth, the approximate values, Japp, are in excellent agreement

with the exact value, J , given by the calculated crack tip deformation and the definition (18). It is seen that,

during crack growth, Japp deviates somewhat from the exact constant fracture energy, Jc, especially for the

ideal-plastic model. This is due to the non-zero adhesive deformation at the loading point, cf. Fig. 6b. The
discrepancy is, however, less than 0.1% at the start of crack growth and less than 0.7% when the crack has

propagated 30 mm. This indicates that, for the present geometry, the approximate formula (36) is accurate

enough to give a good estimate of the energy release rate until the crack has grown to a length of 380 mm.

For a specimen with a larger distance between the crack tip and the loading point, the error is even smaller.

The contributions from the different terms in Eq. (36) are also shown in Fig. 7. These results indicate that

J0in is the largest contributor. However, the term J1 amounts to about 20% of the total value and can

definitely not be neglected. The last term, J2, on the other hand, is only about 0.1% of the total value and

can be discarded for the present case.
In reality the fracture energy, Jc, might not be constant during crack growth. When the adhesive layer

starts to fracture, the conditions at the crack tip are altered. The presence of a more or less sharp crack can

change the energy needed to fracture the adhesive layer (cf. Andersson and Stigh, 2003). For the present

adhesive, experiments indicate that the fracture energy decreases as the crack propagates, cf. Section 6 and

Fig. 9.

In order to provide a physical understanding of the fact that additional terms, besides J0, are needed to

obtain a correct value of J , the stress distribution in the adherends is studied. The lower solid curve of Fig. 8

shows the distribution of maximum (longitudinal) normal stress in the adherends at the onset of non-linear
deformation (for the sawtooth model). The dotted line shows the beam theory prediction for the case of a
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rigid adhesive layer. This distribution obviously has a discontinuity at the crack tip due to the discontinuity

of the bending resistance. This is an un-physical feature which is not present when the adherends are treated

as individual beams connected by the flexible adhesive layer. This difference is the physical explanation to

the presence of the additional terms in J , cf. Eq. (36), since the energy release rate essentially measures the

elastic energy released by the adherends for a unit increase of the crack length. The upper curves of Fig. 8

show the distribution of maximum normal stress in the adherends at the onset of crack growth. The solid

and dashed lines correspond to the sawtooth and the ideal-plastic model, respectively. The dotted line

shows the beam theory prediction of the stress distribution for the case of a rigid adhesive layer. Also here,
the difference between the present analysis and the results for a rigid adhesive layer can be noted. The

difference is even more accentuated than it is at the onset of non-linear deformation, cf. the lower curves of

Fig. 8. This indicates that the additional terms in Eq. (36) become more and more important as fracture is

approached.
6. Experimental results

Results from experiments performed on a toughened epoxy adhesive and the geometry in Fig. 1 are

presented here. The experiments are performed using a servo-hydraulic testing machine (MTS322). The

displacement of the loading point is increased with a constant velocity of 1 mm/min. Both the applied force

and the adhesive crack tip shear deformation are measured during a test. The force is measured with a load
cell located between the actuator and the hydraulic grip. The shear deformation is measured using an

extensometer (MTS632.03F-30). The resolution of the shear measurements is 0.05 lm. In order to minimize

the friction between the adherends, PTFE-film is positioned inside the initial crack. For more information

on details of the experiments, the reader is referred to Alfredsson et al. (2003).

In order to be able to evaluate the last term, J2, in the approximate formula (36), the initial stiffness, k,
must be known. In the previous simulations, it is assumed that the adhesive is linearly elastic up to a finite

value of the deformation, cf. va or vb in Fig. 4. For a real adhesive this might not be the case, i.e. the slope

s0ðvÞ may change continuously in the elastic region. However, since the shear stress close to the load-
ing point is small as compared to the maximum value of sðvÞ, the initial stiffness k ¼ s0ð0Þ may be used.
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Alfredsson et al. (2003) describe a procedure to determine the initial adhesive stiffness from data of the

initial stage of an experiment. The procedure is based on the fact that, for small loads, the applied load,
represented by �s, and the crack tip deformation, vð0Þ, are linearly related through Eq. (31a).

The evolution of the energy release rate during a test is obtained by inserting the measured values of P
and vin into Eq. (36). The result is shown in Fig. 9. The contribution from the different terms in Eq. (36)

are also depicted in the figure. It is seen that the relative magnitudes of these terms correspond well to the

results of the simplified models used in the simulations, cf. Fig. 7. Thus, for the present test geometry the

two first terms, J0in and J1, dominate. The fact that the last term, J2, is negligibly small means that

the determination of the initial stiffness, k, is not crucial to the result. It is sufficient to obtain an

approximate value of k. One may use k ¼ G=t, where G is the shear modulus and t the thickness of the
adhesive layer, respectively. The energy release rate has a maximum close to the end of the curve. Crack

growth is assumed to occur at this maximum. Thus, J decreases beyond fracture, i.e. the fracture energy

decreases as the crack propagates. As mentioned previously, this is attributed to changed conditions at

the crack tip.

In Fig. 10a the values of the force, P , recorded during the experiment are shown as a function of the

load point displacement, D. The agreement with the analytical solutions presented previously is fairly

good. The initial non-linearity of the experimental result is due to initially poor contact at the loading

point. The experimental results also show a more accentuated negative slope during crack growth, i.e. at
the end of the curve. This is attributed to the fact that the fracture energy decreases during crack growth,

a feature not included in the simulations. Fig. 10b shows the variation of the shear deformation at the

crack tip. The agreement with the analytical solutions is good, especially the agreement with the

‘‘sawtooth model’’.
7. Stability of the ENF-specimen

It is well known that the ENF-specimen is only conditionally stable even for the case of a prescribed

displacement of the loading point. Carlsson et al. (1986) investigated the stability for the case of a rigid

adhesive layer. They found that stable crack growth takes place provided that the initial crack length is
larger than the critical value,
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a0;cr ¼
L

2 � 31=3 ’ 0:35L ð37Þ
A similar formula for the case with an arbitrary loading point is derived by Chai and Mall (1988). For the

present configuration the value a0;cr ¼ 347 mm is obtained.

The stability for the case of a compliant adhesive layer is studied next. In order to do this the deflection

must be determined. Since the bending moment along the specimen is known, cf. Eq. (16), this is achieved

from integration of Eq. (5b). For small loads, where the adhesive behaves linearly, the specimen is divided

into three intervals containing a total of six new integration constants determined from the boundary
conditions wð
aÞ ¼ wðcÞ ¼ 0 and the requirements of continuity of the deflection w and the slope w0. For

higher loads, where the adhesive layer behaves non-linearly, the process zone gives an additional interval.

Thus, four intervals containing eight integration constants are required. This procedure gives the deflection,

wðxÞ, and the displacement of the loading point is given by D ¼ wðbÞ.
The resulting load–displacement curves are shown in Fig. 11 for three choices of initial crack length and

the two different sðvÞ-curves, cf. Fig. 4. For a specific adhesive model, all curves coalesce for large values of

the displacement. This is natural since the present model, for a specific value of the crack length, does not
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distinguish if a crack has grown to the specific position or if this is the initial crack length at the onset of

crack propagation. The dots on the curves of Fig. 11 indicate the points of start of crack growth for dif-

ferent values of the initial crack length (a ¼ 200; 210; . . . ; 370; 380 mm). Alternatively, the dots can be seen

as indicating different crack lengths during crack growth. The uppermost curve shows that for the shortest
choice of crack length (a ¼ 200 mm) the load–displacement path is unstable. The lowermost curve (a ¼ 350

mm) corresponds to the geometry used in the experiments. This choice clearly gives a stable path, although

the initial crack length is close to a0;cr given by Eq. (37). Thus, the stability limit of Carlsson et al. (1986) is

conservative. The actual stability limit of the present geometry is obtained for an intermediate choice of

crack length. For both the sawtooth and the ideal-plastic model a critical crack length of about 285 mm is

obtained, i.e. about 18% lower than a0;cr. The remainder of this section is devoted to developing an estimate

of the critical crack length accounting for the presence of the adhesive layer.

From Fig. 11 it is obvious that stable crack growth is obtained for crack lengths giving negative slope in
the PðDÞ-curve. The present experiments are performed using a testing machine with a high stiffness. For

situations where this is not the case, the stability limit is affected by the limited stiffness. If the compliance

of the testing machine, Cm, is taken into account, the stability condition reads
dD
dP

þ Cm 6 0 ð38Þ
For a linear elastic adhesive, the compliance, dD=dP ¼ D=P , of the ENF-specimen, is approximately given

by
CðaÞ ¼ 1

32EWH 3
12a3

�
þ L3 þ 36

a
j2



þ a2

j
þ L

j2

�

 72

j3

�
ð39Þ
where the same assumptions as in Eq. (31) are used. Equation (39) is a very good approximation as long as

jbP 5. During crack growth, the energy release rate equals the fracture energy, i.e. Jlin ¼ Jc. Using Eq. (32),

the crack length is expressed as a function of the load,
a ¼ 4

3

W
P

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EJcH 3

p

 1

j
ð40Þ
Inserting a from Eq. (40) into Eq. (39), and using the stability condition (38), leads to an algebraic equation
in P . Using Eq. (40) again, an algebraic equation in a follows. The real root of this equation gives the

critical value of the crack length,
alin;cr ¼
L

2 � 31=3 1



þ 36

j2L2

 84

j3L3
þ 32

EWH 3Cm

L3

�1=3


 1

j
ð41Þ
It can be noted that Eq. (37) giving the critical crack length for the case of a rigid adhesive layer, a0;cr, is
regained from Eq. (41) with Cm ¼ 0 and j ! 1. For the present geometry alin;cr ¼ 334 mm, i.e. 4% lower

than a0;cr. Thus, by accounting for the presence of the linear elastic adhesive layer a less severe condition
follows. Numerical simulations for linear elastic adhesives show excellent agreement with Eq. (41). Thus,

for brittle adhesives, Eq. (41) should provide a good estimate of the critical crack length. However, for more

ductile adhesives it is still a too severe condition. Hence, the stability for ductile adhesives is studied next.

The most straightforward method to determine the stability limit for a non-linear adhesive is to examine

the graphs in Fig. 11. This means, however, that the calculations outlined in Section 4 must be performed.

Here, a simplified method to obtain an estimate of the critical crack length, is proposed. The method re-

quires knowledge, or at least good approximations, of the fracture energy, Jc, and the critical shear

deformation, vc. It is utilized that, during crack growth, Japp ¼ Jc and vð0Þ ¼ vc. The relation connecting the
load and the crack length during crack growth is found using Eq. (33). Thus, during crack growth, the crack

length is a function of the load,
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a ¼ 4
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P

ffiffiffiffiffiffiffiffiffi
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P vc
WH

�1=2

ð42Þ
where the last term in Eq. (33), i.e. J2 in Eq. (36), is neglected. The deflection is approximately taken as for

an ENF-specimen with a rigid adhesive, cf. Eq. (39),
D ¼ 1

32

P
EWH 3

12a3
�

þ L3
�

ð43Þ
The deflection during crack growth is thus found as a function of the load by inserting a according to Eq.

(42) into Eq. (43). Use of the stability condition (38) yields an algebraic equation in P . Using Eq. (42),

an algebraic equation in a follows,
18a3BðaÞ
BðaÞ þ 8a2Jc


 12a3 
 L3 
 32EWH 3Cm ¼ 0 ð44aÞ
where
BðaÞ ¼ vc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EHDðaÞ

p

 DðaÞ; DðaÞ ¼ v2cEH þ 16a2Jc ð44b;cÞ
Numerical solution of Eq. (44) yields a value of the critical crack length. For the present geometry, this

gives an estimated critical crack length of 316 mm, i.e. 9% lower than a0;cr. It is noted that this estimate is

conservative as compared to the value 285 mm obtained by the more detailed analyses using the constitutive

models shown in Fig. 4.
8. Conclusions and discussion

In the present paper a formula for the energy release rate of the ENF-specimen is derived. The derived

formula for J , Eq. (36), consists of three terms. The first term is identical to the energy release rate for the

case of a rigid adhesive layer. For the present case this term amounts to about 80% of the total energy

release rate. The second term is proportional to the product of the applied load and the adhesive shear

deformation at the crack tip. This term amounts to about 20% of the total energy release rate. The third

term involves the elastic properties of the adhesive layer and is only about 0.1% for the present case.
Equation (36) is an approximation which is shown to give excellent agreement for simulated experiments.

Unlike previously presented formulas, the present one includes the effects of a flexible adhesive layer in an

integrated manner. The actual shape of the stress-deformation relation need not be known. According to

the formula, the applied load and the crack tip shear deformation must be measured in order to obtain a

correct value of the energy release rate. On one hand, it is disappointing having to measure the crack tip

shear deformation. On the other hand, the closed form formula (36) is an important improvement as

compared to existing methods to estimate the energy release rate. Hence, it is the unpleasant truth that the

crack tip shear deformation must be measured in order to obtain accurate values of J . Equation (36) gives a
very good approximation of the instantaneous energy release rate as long as the adhesive shear deformation

at the loading point is negligible as compared to the shear deformation at the crack tip. Technically, a small

shear deformation at the loading point is achieved by making the distance, b, between the crack tip and the

loading point large enough. For a linear elastic adhesive, the condition is jbP 5. For the present non-linear

adhesive, the approximate formula (36) gives good accuracy of the fracture energy, Jc, provided that

jbP 10. In order to be able to study a possible change of the fracture energy during crack growth, the

condition jbP 10 can still be used, if b is taken as the value at the end of crack growth.

The improved approximate formula (36) for the energy release rate of the ENF-specimen, extends the
applicability to situations where the adhesive is ductile. As shown, cf. Fig. 9, the correction term can be
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quite large, in this case more than 20% of the total value. For the present geometry, the maximum adherend

stress is approximately half the yield strength, cf. Fig. 8. Thus, it is possible to use adherends with a smaller

height without jeopardizing the requirement that the adherends must deform elastically. Alfredsson et al.

(2003) present a technique for design of the ENF-specimen, using the fixed ratio a=L ¼ 0:35 in order to
ensure stability. For the present adhesive with a fracture energy of 3.42 kJ/m2 and a critical deformation of

0.167 mm, it is found that with a yield strength of the adherend material of 500 MPa, the smallest possible

adherend height is H ¼ 10 mm. This value is only weakly dependent on the specimen length. With the same

specimen length as in the present paper (L ¼ 1000 mm), the relative size of the correction term decreases

slightly ðJ0in=J ¼ 0:85; J1=J ¼ 0:15Þ. However, with H ¼ 10 mm, the load point displacement at fracture

(Dc ¼ 25 mm) is larger than the total height of the specimen. In order not to introduce non-linear geo-

metrical effects, that may jeopardize the validity of the formula, the larger adherend height H ¼ 32 mm is

chosen. Thus, it is found that large specimens are necessary to give reliable data for a tough engineering
adhesive. It would theoretically be possible, by using a very long specimen, to make all terms in Eq. (36)

except J0in negligible, and thus avoid the necessity to measure the adhesive shear deformation at the crack

tip. By for example choosing the smallest possible adherend height, H ¼ 10 mm, and L ¼ 5000 mm, J0in is

responsible for about 97 % of the total J . However, such a long specimen cannot be handled in practice, not

mentioning that the load point displacement is several hundred mm:s for this case.

For the particular experiment presented in this paper the fracture is cohesive, i.e. it takes place inside the

adhesive. Thus, microcracks and voids are formed in the interior of the adhesive layer, eventually leading to

macroscopic fracture of the adhesive layer. However, the method can handle also situations where the
fracture is adhesive, i.e. crack growth takes place at the adherend/adhesive interface. This is understood by

studying the definition of J , cf. Eq. (18), and noting that the arbitrary constitutive relation, sðvÞ, is a

relation between the stress acting at the adherend/adhesive interface and the total deformation of the

adhesive layer. Thus, Eq. (36) gives the instantaneous energy release rate and finally the fracture energy,

irrespective of the actual failure mechanism.

In the present paper it is presumed that the load is applied centrally between the supports. Thus, the level

of shear deformation to the right of the loading point is relatively small. From Fig. 6 it might appear as if

this part of the specimen is inactive. In order to reduce the size of the specimen it might thus be tempting to
reduce the size of this ‘‘inactive’’ part by applying the load non-centrally, i.e. closer to the right support.

However, numerical simulations show that the shear deformation at the loading point is non-zero for the

linear elastic case even when no crack is present. Moreover, for the linear elastic case, the position where the

shear deformation is zero depends on the size of the crack. Thus, for the general case with an unknown non-

linear constitutive relation, it is not possible to estimate the accuracy of an approximate formula similar to

the one in Eq. (36), if the load is applied non-centrally.

Equations (29) and (30) serve as powerful tools to estimate the length of the process zone. For the

present case, the sawtooth model gives a smaller process zone (81 mm) as compared to the ideal-plastic
model (115 mm), cf. Fig. 6a. Simulations with other adhesive data, indicate that this is a rather general

result. However, the difference is not that large, considering that the two models are fundamentally dif-

ferent. The size of the process zone is quite large, about three times the adherend height and several

hundred times the adhesive thickness (t ¼ 0:2 mm), for the present geometry. Large process zones (as

compared to the adhesive thickness) is common with adhesive layers (e.g. Hunston et al., 1989; Chai, 1993).

This seems to be a result of the ductility of the adhesive. Even with the smallest possible adherend height

(H ¼ 10 mm, L ¼ 1000 mm) the process zone is large, about 50 mm. With a fixed value of H the size of the

process zone is only slightly affected by the length of the specimen. If L is made smaller, the size of the
process zone increases somewhat, and vice versa.

The critical crack length for stable crack growth is here, and by Carlsson et al. (1986) and Chai and Mall

(1988), estimated using the assumption that the fracture energy is constant during crack growth. For the

present case, where the fracture energy decreases as the crack propagates, fracture might be stable at first
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and later turn unstable. Thus, in practice it might be preferable to use the conservative value of the critical

crack length provided by Eq. (37). It would, however, be possible to investigate the effect of a decreasing

fracture energy on the critical crack length, by use of Eq. (44).
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